最新情報

NanoWorld Self-assembly of small molecules at hydrophobic interfaces using group effect - news

Self-assembly of small molecules at hydrophobic interfaces using group effectTue Mar 24 2020

Although common in nature, the self-assembly of small molecules at sold–liquid interfaces is difficult to control in artificial systems. The high mobility of dissolved small molecules limits their residence at the interface, typically restricting the self-assembly to systems under confinement or with mobile tethers between the molecules and the surface. Small hydrogen-bonding molecules can overcome these issues by exploiting group-effect stabilization to achieve non-tethered self-assembly at hydrophobic interfaces. Significantly, the weak molecular interactions with the solid makes it possible to influence the interfacial hydrogen bond network, potentially creating a wide variety of supramolecular structures.* In the paper “Self-assembly of small molecules at hydrophobic interfaces using group effect” William Foster, Keisuke Miyazawa, Takeshi Fukuma, Halim Kusumaatmaja and Kislon Voϊtchovsky investigate the nanoscale details of water and alcohols mixtures self-assembling at the interface with graphite through group-effect. They explore the interplay between inter-molecular and surface interactions by adding small amounts of foreign molecules able to interfere with the hydrogen bond network and systematically varying the length of the alcohol hydrocarbon chain. The resulting supramolecular structures forming at room temperature are then examined using atomic force microscopy with insights from computer simulations.* The authors show that the group-based self-assembly approach investigated in the paper is general and can be reproduced on other substrates such as molybdenum disulphide and graphene oxide, potentially making it relevant for a wide variety of systems.* NanoWorld Arrow UHF-AuD ultra high frequency cantilevers for High Speed AFM were used for the amplitude modulation atomic force microscopy described in this paper. https://www.nanoworld.com/ultra-high-frequency-afm-tip-arro… Please have a look at the NanoWorld blog for the full citation and a direct link to the full article. #MolecularSelfAssembly #nanotechnology #FrequencyModulationAtomicForceMicroscopy #ScanningProbeMicroscopy #SelfAssemblyofMolecules #AFMプローブ

NANOSENSORS Highly efficient fullerene and non-fullerene based ternary organic solar cells incorporating a new tetrathiocin-cored semiconductor - news

Highly efficient fullerene and non-fullerene based ternary organic solar cells incorporating a new tetrathiocin-cored semiconductorMon Mar 16 2020

Published new post (Highly efficient fullerene and non-fullerene based ternary organic solar cells incorporating a new tetrathiocin-cored semiconductor) on NANOSENSORS Blog Organic photovoltaic (OPV) devices based on nanocomposites of π-conjugated semiconductors are a prospective solar cell technology and have attracted considerable attention due to unprecedented attributes such as printability, foldability, portability, wearability, semi-transparency and amenability to cost-effective large area fabrication. Extensive and focussed research to enhance the power conversion efficiency (PCE) of organic solar cells have led to the development of highly efficient bulk heterojunction (BHJ) single and multijunction organic solar cells with PCEs > 15%.* In the paper “Highly efficient fullerene and non-fullerene based ternary organic solar cells incorporating a new tetrathiocin-cored semiconductor” Lethy Krishnan Jagadamma, Rupert G. D. Taylor, Alexander L. Kanibolotsky, Muhammad Tariq Sajjad, Iain A. Wright, Peter N. Horton, Simon J. Coles, Ifor D. W. Samuel and Peter J. Skabara present a dual-chain oligothiophene-based organic semiconductor, EH-5T-TTC.* Detailed characterisation of the ternary blend systems as presented in the paper implies that the ternary small molecule EH-5T-TTC functions differently in polymer: fullerene and polymer: non-fullerene blends and has dual functions of morphology modification and complementary spectral absorption.* To understand the differences in recombination dynamics of the blends containing EH-5T-TTC and fullerene/non-fullerene acceptors, detailed morphological characterisation was performed using atomic force microscopy (AFM).* NANOSENSORS™ PointProbe® Plus PPP-NCSTR silicon AFM probes with typical force constant of 7.4 Nm−1 were used for the AFM height images presented in the paper. https://www.nanosensors.com/pointprobe-plus-non-contact-sof… Please have a look at the NANOSENSORS blog for the full citation and a direct link to the full paper #photovoltaics #Fullerene #AtomicForceMicroscopy #AFMプローブ

NanoWorld Flexible 3D Electrodes of Free-Standing TiN Nanotube Arrays Grown by Atomic Layer Deposition with a Ti Interlayer as an Adhesion Promoter - news

Flexible 3D Electrodes of Free-Standing TiN Nanotube Arrays Grown by Atomic Layer Deposition with a Ti Interlayer as an Adhesion PromoterMon Mar 09 2020

New post - Flexible 3D Electrodes of Free-Standing TiN Nanotube Arrays Grown by Atomic Layer Deposition with a Ti Interlayer as an Adhesion Promoter (https://www.nanoworld.com/…/flexible-3d-electrodes-of-free…/) has been published on NanoWorld Blog. Nanostructured electrodes and their flexible integrated systems have great potential for many applications, including electrochemical energy storage, electrocatalysis and solid-state memory devices, given their ability to improve faradaic reaction sites by large surface area. Although many processing techniques have been employed to fabricate nanostructured electrodes on to flexible substrates, these present limitations in terms of achieving flexible electrodes with high mechanical stability.* In the study “Flexible 3D Electrodes of Free-Standing TiN Nanotube Arrays Grown by Atomic Layer Deposition with a Ti Interlayer as an Adhesion Promoter” by Seokjung Yun, Sang-Joon Kim, Jaesung Youn, Hoon Kim, Jeongjae Ryu, Changdeuck Bae, Kwangsoo No and Seungbum Hong, the adhesion, mechanical properties and flexibility of TiN nanotube arrays on a Pt substrate were improved using a Ti interlayer. Highly ordered and well aligned TiN nanotube arrays were fabricated on a Pt substrate using a template-assisted method with an anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) system.* The authors show that with the use of a Ti interlayer between the TiN nanotube arrays and Pt substrate, the TiN nanotube arrays could perfectly attach to the Pt substrate without delamination and faceted phenomena. Furthermore, the I-V curve measurements confirmed that the electric contact between the TiN nanotube arrays and substrate for use as an electrode was excellent, and its flexibility was also good for use in flexible electronic devices. Future efforts will be directed toward the fabrication of embedded electrodes in flexible plastic substrates by employing the concepts demonstrated in this study.* The presented strategy provides a new class of nanostructured 3D electrodes to overcome critical mechanical stability, thus providing a great potential platform for application in a flexible integrated device.* Topography and transport properties were investigated using a conductive atomic force microscope with NanoWorld Pointprobe® EFM AFM probes ( Pt-coated conductive AFM tips).* https://www.nanoworld.com/pointprobe-electrostatic-force-mi… Pleae have a look at the NanoWorld blog for the full citation and a direct link to the full article #AtomicForceMicroscopy #NanostructuredMaterials #flexibledevice #ConductiveAFM #SPMプローブ

NANOSENSORS Infrared nano-spectroscopy of ferroelastic domain walls in hybrid improper ferroelectric Ca3Ti2O7 - news

Infrared nano-spectroscopy of ferroelastic domain walls in hybrid improper ferroelectric Ca3Ti2O7Tue Mar 03 2020

Published new post (Infrared nano-spectroscopy of ferroelastic domain walls in hybrid improper ferroelectric Ca3Ti2O7) on NANOSENSORS Blog Ferroic materials are well known to exhibit heterogeneity in the form of domain walls. Understanding the properties of these boundaries is crucial for controlling functionality with external stimuli and for realizing their potential for ultra-low power memory and logic devices as well as novel computing architectures.* In the article “Infrared nano-spectroscopy of ferroelastic domain walls in hybrid improper ferroelectric Ca3Ti2O7” K. A. Smith, E. A. Nowadnick, S. Fan, O. Khatib, S. J. Lim, B. Gao, N. C. Harms, S. N. Neal, J. K. Kirkland, M. C. Martin, C. J. Won, M. B. Raschke, S.-W. Cheong, C. J. Fennie, G. L. Carr, H. A. Bechtel and J. L. Musfeldt employ synchrotron-based near-field infrared nano-spectroscopy to reveal the vibrational properties of ferroelastic (90∘ ferroelectric) domain walls in the hybrid improper ferroelectric Ca3Ti2O7 . By locally mapping the Ti-O stretching and Ti-O-Ti bending modes, they reveal how structural order parameters rotate across a wall. Thus, they link observed near-field amplitude changes to underlying structural modulations and test ferroelectric switching models against real space measurements of local structure. This initiative opens the door to broadband infrared nano-imaging of heterogeneity in ferroics.* NANOSENSORS™ Platinum Silicide PtSi-NCH AFM probes were used for the Near-field infrared spectroscopy. Atomic force and piezoforce imaging reveal the different orientations of directional order parameters and domain wall character, providing a physical playground for graph theory. * https://www.nanosensors.com/platinum-silicide-non-contact-t… Please have a look at the NANOSENSORS blog for the full citation and a direct link to the full article. #AtomicForceMicroscopy #multiferroics #PiezoresponseForceMicroscopy #AFM

NanoWorld Graphene Quantum Dots as Nanozymes for Electrochemical Sensing of Yersinia enterocolitica in Milk and Human Serum - news

Graphene Quantum Dots as Nanozymes for Electrochemical Sensing of Yersinia enterocolitica in Milk and Human SerumThu Feb 27 2020

New post - Graphene Quantum Dots as Nanozymes for Electrochemical Sensing of Yersinia enterocolitica in Milk and Human Serum (https://www.nanoworld.com/…/graphene-quantum-dots-as-nanoz…/) has been published on NanoWorld Blog. Yersinia enterocolitica is a gram-negative bacillus shaped bacterium that leads to a zootonic disease called yersiniosis. The infection is demonstrated as mesenteric adenitis, acute diarrhea, terminal ileitis, and pseudoappendicitis. Rarely, it can even result in sepsis. According to the 2017 report of the European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC), Y. enterocolitica has been realized as the third most common foodborne-zoonotic disease after campylobacteriosis and salmonellosis in the European Union.* Several studies suggested that #pathogendetection #GrapheneQuantumDots #immunosensor #AtomicForceMicroscopy

nanotools Nanotools is attending the SPIE Advanced Lithography in California - news

Nanotools is attending the SPIE Advanced Lithography in CaliforniaFri Feb 21 2020

nanotools is attending the SPIE Advanced Lithography in California.
The technical program of the primary global #lithography event will focus
If you would like to meet with nanotools in San Jose then please click on the contact link in the nanotools blog https://www.nanotools.com/…/connecting-with-partners-and…

NanoAndMore BPS 2020 San Diego NanoAndMore booth 818 Thank you and so long - news

BPS 2020 San Diego NanoAndMore booth 818 Thank you and so longThu Feb 20 2020

Thank you all for visiting our booth at the 2020 San Diego Biophysical Society Meeting this week. We hope you have a safe trip home and are looking forward to meeting you again soon https://youtu.be/Q2ubyg6KiOc #bps2020 #biophysics #biomaterials #AFMprobes

NanoAndMore It’s the last day @BiophysicalSoc Meeting 2020 exhibit in San Diego - news

It’s the last day @BiophysicalSoc Meeting 2020 exhibit in San DiegoTue Feb 18 2020

It’s the last day @BiophysicalSoc Meeting 2020 exhibit in San Diego and it’s the last chance to visit @NanoAndMore USA booth no. 818 from 10 am – 4 p.m. to pick up your free sample of NANOSENSORS™ uniqprobe qp-BioT #AFMprobes and to find out about all the other kinds of #AFMtips that NanoAndMore USA offers for #AtomicForceMicroscopy applications in #biology, #biophysics, #molecularbiology, #lifesciences etc. etc. … https://www.nanoandmore.com/Life-Science-Biological-Soft…
We’re looking forward to welcoming you! #bps2020

NANOSENSORS Size‐Independent Transmembrane Transporting of Single Tetrahedral... - news

Size‐Independent Transmembrane Transporting of Single Tetrahedral...Tue Feb 18 2020

Published new post (Size‐Independent Transmembrane Transporting of Single Tetrahedral DNA Nanostructures) on NANOSENSORS Blog Targeted drug delivery and precision medicine have now become a new paradigm in cancer therapy, with nanocarriers, pharmacologically active drugs could be directly delivered into target cancer cells to manage or reverse the course of disease. Nevertheless, the recent critical issue for drug delivery systems is lack of efficient drug delivery carriers.* DNA nanostructures have attracted considerable attention as drug delivery carriers. However, the transmembrane kinetics of DNA nanostructures remains less explored.* In the article “Size‐Independent Transmembrane Transporting of Single Tetrahedral DNA Nanostructures” Xi Chen, Falin Tian, Min Li, Haijiao Xu, Mingjun Cai, Qian Li, Xiaolei Zuo, Hongda Wang, Xinghua Shi, Chunhai Fan, Huricha Baigude and Yuping Shan describe how they monitored the dynamic process of transporting single tetrahedral DNA nanostructures (TDNs) monitored in real time using a force-tracing technique based on atomic force microscopy.* The authors used special NANOSENSORS™ PointProbe® Plus PPP-BSI AFM probes for the single-molecule force tracing. The NANOSENSORS PPP-BSI AFM tips were modified in two steps as described in their article: First they were washed by Piranha solution (V(H2SO4):V(H2O2) = 3:1) for 1 h, cleaned with ultrapure water twice and absolute ethylacohol once then the AFM tips were dried by argon gas, and cleaned under O3 for 30 min to remove other impurities. After cleaning, the AFM tips were modified with 3-aminopropyltriethoxysilane[17] to generate amino group, it was convenient for linking the heterobifunctional PEG (MAL-PEG2000-SCM, FW≈2000, SensoPathechnologies, Bozeman, MT 1 mg mL−1). After drying with argon, the tips were immersed in a mixture of 100 × 10−9m TDNs, 50 μL NH2OH-reagent (500 × 10−3m NH2OH•HCl, 25 × 10−3m EDTA, pH 7.5), and 50 μL buffer A (100 × 10−3m NaCl, 50 × 10−3m NaH2PO4, 1 × 10−3m EDTA, pH 7.5). After functionalization for 1 h, the AFM tips were washed with PBS for three times and stored at 4 °C .* Please have a look at the NANOSENSORS blog for the full citation and a direct link to the full article #forcetracing #AtomicForceMicroscopy #DNAnanostructures #bsp2020

NANOSENSORS Get your free NANOSENSORS Fun Grating at booth 818 at Biophysical... - news

Get your free NANOSENSORS Fun Grating at booth 818 at Biophysical...Mon Feb 17 2020

Published new post (Get your free NANOSENSORS Fun Grating at booth 818 at Biophysical Society Meeting 2020) on NANOSENSORS Blog This year NANOSENSORS™ celebrates its 30th anniversary. We are celebrating this with the whole #AFMcommunity by giving away NANOSENSORS™ Fun Gratings especially created for this occasion @BiophysicalSoc Meeting 2020 in San Diego at NanoAndMore USA booth no. 818 this week. Pick up your grating, switch on the AFM, start scanning, discover the images that are hidden in the grating and celebrate 30 years of NANOSENSORS high quality AFM probes with us. #singlecell #singlemoleculeresearch #singlemolecule #nanoscience #AFMcommunity #AtomicForceMicroscopy #bps20

NanoWorld We're  at the Biophysical Society Meeting in San Diego this week - news

We're at the Biophysical Society Meeting in San Diego this weekMon Feb 17 2020

New post - We're at the Biophysical Society Meeting in San Diego this week (https://www.nanoworld.com/…/were-at-the-biophysical-societ…/) has been published on NanoWorld Blog. We're at NanoAndMore USA booth no. 818 at the Biophysical Society Meeting in San Diego this week. Have you already visited us and found out what's up with the giant AFM probe at the booth? Finally we can exhibit something you can see with your bare eyes. Check out our big and even bigger AFM probe models at NanoAndMore USA booth no. 818 at the Biophysical Society exibit #bps20 #singlemoleculeresearch #biophysics #AFMprobes

NanoAndMore The exhibit @BiophysicalSoc Meeting 2020 in San Diego will be open from 10 am today - news

The exhibit @BiophysicalSoc Meeting 2020 in San Diego will be open from 10 am todaySun Feb 16 2020

The exhibit @BiophysicalSoc Meeting 2020 in San Diego will be open from 10 am today. Don't forget to visit @NanoAndMore USA booth no. 818 to pick up your free sample of NANOSENSORS uniqprobe qp-BioT #AFMprobes and find out what other surprises are planned for the 30th anniversary of NANOSENSORS and the 20th anniversary of NanoWorld

NanoAndMore Booth #818 Biophysical Society Annual Meeting 2020 San Diego NanoAndMore - news

Booth #818 Biophysical Society Annual Meeting 2020 San Diego NanoAndMoreSun Feb 16 2020

https://youtu.be/qhJaUJ2E3mQ We’re all set up and ready to welcome you @BiophysicalSoc Annual Meeting 2020 in San Diego! Don't forget to visit us and pick up your free sample of NANOSENSORS uniqprobe qp-BioT #AFMprobes at NanoAndMore USA booth #818 during the next three days.https://www.nanosensors.com/uniqprobe-uniform-quality-conta… We're looking forward to welcome you! #bps2020 #biomaterials #biophysics #molecularbiology

NanoWorld Optical manipulation of sphingolipid biosynthesis using photoswitchable ceramides - news

Optical manipulation of sphingolipid biosynthesis using photoswitchable ceramidesMon Feb 10 2020

New post - Optical manipulation of sphingolipid biosynthesis using photoswitchable ceramides (https://www.nanoworld.com/…/optical-manipulation-of-sphing…/) has been published on NanoWorld Blog. Ceramides are central intermediates of sphingolipid metabolism that also function as potent messengers in stress signaling and apoptosis. Progress in understanding how ceramides execute their biological roles is hampered by a lack of methods to manipulate their cellular levels and metabolic fate with appropriate spatiotemporal precision.* In the article “Optical manipulation of sphingolipid biosynthesis using photoswitchable ceramides” Matthijs Kol, Ben Williams, Henry Toombs-Ruane, Henri G Franquelim, Sergei Korneev, Christian Schroeer, Petra Schwille, Dirk Trauner, Joost CM Holthuis and James A Frank report on clickable, azobenzene-containing ceramides, caCers, as photoswitchable metabolic substrates to exert optical control over sphingolipid production in cells.* They combine atomic force microscopy on model bilayers with metabolic tracing studies in cells, and demonstrate that light-induced alterations in the lateral packing of caCers lead to marked differences in their metabolic conversion by sphingomyelin synthase and glucosylceramide synthase. These changes in metabolic rates are instant and reversible over several cycles of photoswitching. The findings described in the article disclose new opportunities to probe the causal roles of ceramides and their metabolic derivatives in a wide array of sphingolipid-dependent cellular processes with the spatiotemporal precision of light.* The High-speed AFM in AC mode described in the article was done with NanoWorld Ultra-Short Cantilevers USC-F0.3-k0.3 with a typical stiffness of 0.3 N/m. The AFM cantilever oscillation was tuned to a frequency of 100–150 kHz and the amplitude kept below 10 nm. The scan rate was set to 25–150 Hz. Images were acquired at 256 × 256 pixel resolution. All measurements were performed at room temperature. The force applied on the sample was minimized by continuously adjusting the set point and gain during imaging. Height, error, deflection and phase-shift signals were recorded and images were line-fitted as required.* https://www.nanoworld.com/Ultra-Short-Cantilevers-USC-F0.3-… Please have a look at the NanoWorld blog for the full citation and a direct link to the full article. #CellBiology #sphingosine #BioactiveLipids #AFMprobes #HighSpeedAtomicForceMicroscopy

NANOSENSORS 3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation - news

3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field StimulationMon Feb 03 2020

Published new post (3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation) on NANOSENSORS Blog Bone is the second most commonly transplanted tissue, preceded only by blood transfusion.Within this context, it is imperative to achieve the functional and structural restoration of damaged bone tissue. A major difficulty in bone tissue engineering arises from the fact that the bone regeneration process requires a long time for achieving a completely functional tissue. Generally, cells are seeded ex vivo into a three-dimensional (3D) biocompatible and sometimes biodegradable structure called scaffold, where they attach and grow. After the implantation into the injured site, the scaffolds should allow proper host cell colonization for regeneration purposes.* Magnetic scaffolds emerged as promising solution for this purpose. Activation of the magnetic scaffolds using external static magnetic fields (SMF) prevents the decrease of bone mineral density and promotes the bone regeneration in bone fractures. The significant alterations in cell behaviors stimulated by the externally applied magnetic fields has been demonstrated in numerous studies. For example, it has been shown that an externally applied SMF using a magnet accelerates the osteogenic differentiation of osteoblasts-like cells in vitro and triggers peri-implant bone formation in vivo.* The magnetism can also be used through scaffolding materials with magnetic properties. For example, biomaterials that incorporate magnetic nanoparticles (MNPs) are being developed.* In the article «3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation” Irina Alexandra Paun, Bogdan Stefanita Calin, Cosmin Catalin Mustaciosu, Mona Mihailescu, Antoniu Moldovan, Ovidiu Crisan, Aurel Leca and Catalin Romeo Luculescu report on three-dimensional (3D) superparamagnetic scaffolds that enhanced the mineralization of magnetic nanoparticle-free osteoblast cells. The scaffolds were fabricated with submicronic resolution by laser direct writing via two photons polymerization of Ormocore/magnetic nanoparticles (MNPs) composites and possessed complex and reproducible architectures.* To prove the magnetic nature of the MNPs in the polymerized composites, magnetic force microscopy (MFM) was carried out on scaffolds with different MNPs concentrations. NANOSENSORS™ PointProbe® Plus PPP-MFMR AFM probes with magnetic coating were used.* https://www.nanosensors.com/pointprobe-plus-magnetic-force-… Please have a look at the NANOSENSORS blog for the full citation and a direct link to the full article. #ExtracellularMatrixMineralization #MFM #SuperparamagneticScaffold #AFMprobes

ハイライト


Loading
nanosensors-logo
nanoworld-logo
budgetsensors-logo
mikromasch-logo
opus-logo
sqube-logo
nanotools-logo